Как рассчитать и намотать импульсный трансформатор для полумостового блока питания? Ферритовый фильтр — для чего он нужен Что можно сделать из феррита.

10.04.2024 Бойлеры

Как рассчитать и намотать импульсный трансформатор для полумостового блока питания?

Речь пойдёт о «ленивой намотке». Это когда лень считать витки. https://сайт/


Самые интересные ролики на Youtube

Выбор типа магнитопровода.

Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://сайт/

Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.


На картинке изображён ферритовый магнитопровод М2000НМ.

Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.


D – внешний диаметр кольца.

d – внутренний диаметр кольца.

Получение исходных данных для простого расчёта импульсного трансформатора.

Напряжение питания.

Помню, когда наши электросети ещё не приватизировали иностранцы, я строил импульсный блок питания. Работы затянулись до ночи. Во время проведения последних испытаний, вдруг обнаружилось, что ключевые транзисторы начали сильно греться. Оказалось, что напряжение сети ночью подскочило аж до 256 Вольт!

Конечно, 256 Вольт, это перебор, но ориентироваться на ГОСТ-овские 220 +5% –10% тоже не стоит. Если выбрать за максимальное напряжение сети 220 Вольт +10%, то:


242 * 1,41 = 341,22V (считаем амплитудное значение).

341,22 – 0,8 * 2 ≈ 340V (вычитаем падение на выпрямителе).


Индукция.

Определяем примерную величину индукции по таблице.

Пример: М2000НМ – 0,39Тл.


Частота.

Частота генерации преобразователя с самовозбуждением зависит от многих факторов, в том числе и от величины нагрузки. Если выберите 20-30 кГц, то вряд ли сильно ошибётесь.


Граничные частоты и величины индукции широко распространённых ферритов.

Марганец-цинковые ферриты.

Параметр Марка феррита
6000НМ 4000НМ 3000НМ 2000НМ 1500НМ 1000НМ
0,005 0,1 0,2 0,45 0,6 1,0
0,35 0,36 0,38 0,39 0,35 0,35

Никель-цинкове ферриты.

Параметр Марка феррита
200НН 1000НН 600НН 400НН 200НН 100НН
Граничная частота при tg δ ≤ 0,1, МГц 0,02 0,4 1,2 2,0 3,0 30
Магнитная индукция B при Hм = 800 А / м, Тл 0,25 0,32 0,31 0,23 0,17 0,44

Как выбрать ферритовый кольцевой сердечник?

Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в .


Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.


Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.


Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.

В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.


Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».

Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.


Как рассчитать число витков первичной обмотки?

Вводим исходные данные, полученные в предыдущих параграфах, в форму калькулятора и получаем количество витков первичной обмотки. Меняя типоразмер кольца, марку феррита и частоту генерации преобразователя, можно изменить число витков первичной обмотки.

Нужно отметить, что это очень-очень упрощённый расчёт импульсного трансформатора.

Но, свойства нашего замечательного блока питания с самовозбуждением таковы, что преобразователь сам адаптируется к параметрам трансформатора и величине нагрузки, путём изменения частоты генерации. Так что, с ростом нагрузки и попытке трансформатора войти в насыщение, частота генерации возрастает и работа нормализуется. Точно также компенсируются и мелкие ошибки в наших вычислениях. Я пробовал менять количество витков одного и того же трансформатора более чем в полтора раза, что и отразил в ниже приведённых примерах, но так и не смог обнаружить никаких существенных изменений в работе БП, кроме изменения частоты генерации.

Как рассчитать диаметр провода для первичных и вторичных обмоток?


Диаметр провода первичных и вторичных обмоток зависит от параметров БП, введённых в форму. Чем больше ток обмотки, тем больший потребуется диаметр провода. Ток первичной обмотки пропорцонален "Используемой мощности трансформатора".


Особенности намотки импульсных трансформаторов.

Намотка импульсных трансформаторов, а особенно трансформаторов на кольцевых и тороидальных магнитопроводах имеет некоторые особенности.

Дело в том, что если какая-либо обмотка трансформатора будет недостаточно равномерно распределена по периметру магнитопровода, то отдельные участки магнитопровода могут войти в насыщение, что может привести к существенному снижению мощности БП и даже привести к выходу его из строя.


Мы же пытаемся мотать «ленивую обмотку». А в этом случае, проще всего намотать однослойную обмотку «виток к витку».


Что для этого нужно?

Нужно подобрать провод такого диаметра, чтобы он уложился «виток к витку», в один слой, в окно имеющегося кольцевого сердечника, да ещё и так, чтобы при этом число витков первичной обмотки не сильно отличалось от расчётного.


Если количество витков, полученное в калькуляторе, не будет отличаться более чем на 10-20% от количества, полученного в формуле для расчёта укладки, то можно смело мотать обмотку, не считая витков.

Правда, для такой намотки, скорее всего, понадобится выбрать магнитопровод с несколько завышенной габаритной мощностью, что я уже советовал выше.


1 – кольцевой сердечник.

2 - прокладка.

3 – витки обмотки.


На картинке видно, что при намотке «виток к витку», расчетный периметр будет намного меньше, чем внутренний диаметр ферритового кольца. Это обусловлено и диаметром самого провода и толщиной прокладки.

На самом же деле, реальный периметр, который будет заполняться проводом, будет ещё меньше. Это связано с тем, что обмоточный провод не прилегает к внутренней поверхности кольца, образуя некоторый зазор. Причём, между диаметром провода и величиной этого зазора существует прямая зависимость.


Не стоит увеличивать натяжение провода при намотке с целью сократить этот зазор, так как при этом можно повредить изоляцию, да и сам провод.


По нижеприведённой эмпирической формуле можно рассчитать количество витков, исходя из диаметра имеющегося провода и диаметра окна сердечника.

Максимальная ошибка вычислений составляет примерно –5%+10% и зависит от плотности укладки провода.


w = π(D – 10S – 4d) / d , где:


w – число витков первичной обмотки,

π – 3,1416,

D – внутренний диаметр кольцевого магнитопровода,

S – толщина изолирующей прокладки,

d – диаметр провода с изоляцией,

/ – дробная черта.


Как измерить диаметр провода и определить толщину изоляции – рассказано .

Для облегчения расчётов, загляните по этой ссылке:


Несколько примеров расчёта реальных трансформаторов.


● Мощность – 50 Ватт.

Магнитопровод – К28 х 16 х 9.

Провод – Ø0,35мм.

w= π (16 – 10*0,1 – 4*0,39) / 0,39 ≈ 108 (витков).

Реально поместилось – 114 витков.


● Мощность – 20 Ватт.

Магнитопровод – К28 х 16 х 9.

Провод – Ø0,23мм.

w = π (16 – 10*0,1 – 4*0,25) / 0,25 ≈ 176 (витков).

Реально поместилось – 176 витков.


● Мощность – 200 Ватт.

Магнитопровод – два кольца К38 х 24 х 7.

Провод – Ø1,0мм.

w = π (24 – 10*0,1 – 4*1,07) / 1,07 ≈ 55 (витков).

Реально поместилось 58 витков.


В практике радиолюбителя нечасто выпадает возможность выбрать диаметр обмоточного провода с необходимой точностью.


Если провод оказался слишком тонким для намотки «виток к витку», а так часто бывает при намотке вторичных обмоток, то всегда можно слегка растянуть обмотку, путём раздвигания витков. А если не хватает сечения провода, то обмотку можно намотать сразу в несколько проводов.


Как намотать импульсный трансформатор?

Вначале нужно подготовить ферритовое кольцо.

Для того чтобы провод не прорезал изоляционную прокладку, да и не повредился сам, желательно притупить острые кромки ферритового сердечника. Но, делать это не обязательно, особенно если провод тонкий или используется надёжная прокладка. Правда, я почему-то всегда это делаю.

При помощи наждачной бумаги скругляем наружные острые грани.


То же самое проделываем и с внутренними гранями кольца.



Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.

В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, лавсановую плёнку или даже бумагу.


При намотке крупных колец с использованием провода толще 1-2мм удобно использовать киперную ленту.


Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.


Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.

Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.


При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.



Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.



Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.



Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки.

Необходимую длину провода обмотки определить совсем просто. Достаточно измерить длину одного витка и перемножить это значение на необходимое количество витков. Небольшой припуск на выводы и погрешность вычисления тоже не помешает.

34 (мм) * 120 (витков) * 1,1 (раз) = 4488 (мм)



Если для обмотки используется провод тоньше, чем 0,1мм, то зачистка изоляции при помощи скальпеля может снизить надёжность трансформатора. Изоляцию такого провода лучше удалить при помощи паяльника и таблетки аспирина (ацетилсалициловой кислоты).



Будьте осторожны! При плавлении ацетилсалициловой кислоты выделяются ядовитые пары!



Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.


Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.


Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.



Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.


Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).


Затем выводы вместе с трубкой нужно закрепить х/б нитью.



Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.



Если предполагается использовать , то можно намотать вторичную обмотку в два провода. Это обеспечит полную симметрию обмоток. Витки вторичных обмоток также должны быть равномерно распределены по периметру сердечника. Особенно это касается наиболее мощных в плане отбора мощности обмоток. Вторичные обмотки, отбирающие небольшую, по сравнению с общей, мощность, можно мотать как попало.


Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.

На картинке вторичная обмотка, намотанная в четыре провода.


Для чего нужны ферритовые кольца на кабелях компьютера и какой от них эффект?

Внутренние и внешние компьютерные кабели могут работать как миниатюрные антенны, поскольку они преобразуют шумы напряжения и тока в электромагнитное излучение.

Ферритовые кольца для плоских и круглых кабелей обеспечивают эффективное подавление шумовых токов до их излучения в виде электромагнитных помех.

Неэкранированные кабели излучают помехи вследствие протекания по их медным проводникам синфазного шума, то есть высокочастотного тока, текущего в одном направлении по всем проводникам кабеля.
Эти токи создают магнитное поле определенной величины и направления.

Кабельные ферриты ослабляют шумовые токи, «захватывая» магнитное поле и рассеивая часть его энергии в виде тепла т.е ферритовый элемент, надетый на проводники кабеля, создает большой активный импеданс для синфазных токов.
Ферриты можно использовать на внутренних силовых кабелях с постоянным или переменным током, и на проводниках, по которым передаются аналоговые и цифровые сигналы.

Производители электронного оборудования используют ферриты для подавления электромагнитных излучений от внешних силовых и сигнальных кабелей системных блоков компьютеров, мониторов, клавиатур, принтеров и других периферийных устройств.

Длинные внешние силовые и сигнальные кабели работают как антенны, эффективно излучая помехи, создаваемые внутри корпуса прибора, во внешнюю среду.
Использование ферритовых изделий позволяет снизить требования к экранированию внешних кабелей и во многих случаях дает возможность снизить их стоимость.

Кабельные ферриты для подавления электромагнитных помех следует выбирать, исходя из конкретной задачи, кабельный феррит должен создавать максимальный последовательный импеданс для частот шумового сигнала.

После выбора материала и приблизительных размеров сердечника создаваемый им последовательный импеданс и эффективность шумоподавления можно оптимизировать путем:

1. Увеличения длины охватываемой ферритом части проводника;
2. Увеличения поперечного сечения ферритового сердечника (особенно для силовых цепей);
3. Выбора сердечника с внутренним диаметром, наиболее близким к внешнему диаметру проводника или кабеля;

В общем, наилучший ферритовый сердечник - самый длинный и толстый из тех, что могут быть размещены на кабеле, с внутренним диаметром, совпадающим с внешним диаметром кабеля.
При установке на гибкие кабели массивные ферритовые сердечники должны быть заключены в термоусадочную трубку или защищены и закреплены на месте другим способом.

Последовательный импеданс, вносимый высокочастотным ферритовым сердечником, можно увеличить, сделав на нем несколько витков проводника.
По теория импеданс увеличивается пропорционально квадрату числа витков.
Однако вследствие нелинейности ферритов и потерь в них два витка на сердечнике увеличат импеданс не в четыре раза, а несколько меньше.

В большинстве случаев феррит должен располагаться максимально близко к источнику помехи, что предотвратит передачу помех через другие элементы конструкции прибора, где их гораздо труднее отфильтровать.

Но для кабелей передачи данных, где проводники входят в экранированный корпус или выходят из него, ферритовые сердечники должны располагаться максимально близко к месту прохода через экран.
Это предотвратит излучение помех проводниками внутри корпуса после фильтра.

Накопительное обновление Windows 10 KB4512941

30 августа 2019 г. Microsoft выпустила накопительное обновление KB4512941 для Windows 10 May 2019 Update (версия 1903) на базе процессоров x64 (amd64) и ARM64, и для Windows Server 2019 (1903) на базе процессоров x64.

Драйвер Game Ready GeForce 436.15 WHQL

Драйвер Game Ready GeForce 436.15 WHQL призван улучшить быстродействие видеокарт Nvidia и обеспечить работу игры Control студии Remedy в режиме трассировки лучей.

Драйвер AMD Radeon Adrenalin 19.8.2 Edition

Radeon Software Adrenalin 2019 Edition 19.8.2 - это второй августовский выпуск графического драйвера, улучшающий производительность в играх Man of Medan и Control.

Каждый из нас видел на шнурах питания или на кабелях согласования электронных устройств небольшие цилиндры. Их можно встретить на самых обычных компьютерных системах, как в офисе, так и дома, на концах проводов, которые соединяют системный блок с клавиатурой, мышью, монитором, принтером, сканером и т. д. Данный элемент носит название "ферритовое кольцо" (или ферритовый фильтр). В этой статье мы разберемся, с какой целью производители компьютерной и высокочастотной техники оснащают свою кабельною продукцию упомянутыми элементами.

Основное назначение

Физические свойства

Феррит является ферромагнетиком, не проводящим электрический ток, то есть по сути это магнитный изолятор. В этом материале не создаются и поэтому он весьма быстро перемагничивается – в такт частоте внешних электромагнитных полей. Это свойство материала является основой для эффективной защиты электронных приборов. Ферритовое кольцо, надетое на кабель, способно создать для синфазных токов большой активный импеданс.

Видео: Как Сделать Преобразователь на Ферритовом кольце Своими Руками

Данный материал образуется из химического соединения оксидов железа с оксидами других металлов. Он обладает уникальными магнитными характеристиками и низкой электропроводностью. Благодаря этому ферриты практически не имеют конкурентов среди иных магнитных материалов в высокочастотной технике. Ферритовые кольца 2000нм значительно увеличивают индуктивность кабеля (в несколько сотен или тысяч раз), что обеспечивает подавление высокочастотных помех. Данный элемент устанавливается на шнур при его производстве либо, разрезанный на две полуокружности, надевается на провод сразу после его изготовления. Ферритовый фильтр упаковывается в пластиковый корпус. Если его разрезать, то можно увидеть внутри кусок металла.

А нужен ли ферритовый фильтр? Или это очередной обман?

Компьютеры являются весьма «шумными» (в электромагнитном плане) приборами. Так, материнская плата внутри системного блока способна осциллировать на частоте одного килогерца. Клавиатура обладает микрочипом, который также работает на высокой частоте. Все это приводит к так называемой генерации радиошумов вблизи системы. В большинстве случаев они устраняются при помощи экранирования платы от электромагнитных полей металлическим корпусом. Однако другой источник шумов – это медные провода, которые соединяют различные устройства. По сути, они действуют как длинные антенны, которые улавливают сигналы от кабелей другой радио- и телевизионной техники, и влияют на работу «своего» прибора. Ферритовый фильтр устраняет электромагнитные шумы и сигналы эфирного вещания. Эти элементы преобразуют электромагнитные высокочастотные колебания в тепловую энергию. Вот поэтому их и устанавливают на концах большинства кабелей.

Видео: Как правильно намотать длинный провод на ферритовое кольцо или тороидальный сердечник трансформатора

Как правильно выбрать ферритовый фильтр

Видео: Ферритовые кольца

Чтобы установить на кабель ферритовое кольцо своими руками, необходимо разбираться в типах этих изделий. Ведь от вида провода и его толщины зависит, какой именно фильтр (из какого материала) потребуется использовать. К примеру, кольцо, установленное на многожильный кабель (шнур питания, передачи данных, видео или USB-интерфейс), создает на этом участке так называемый синфазный трансформатор, пропускающий противофазные сигналы, несущие полезную информацию, а также отражает синфазные помехи. В данном случае следует использовать не поглощающий феррит во избежание нарушения передачи информации, а более высокочастотный ферроматериал. А вот ферритовые кольца на предпочтительнее выбирать из материала, который будет рассеивать высокочастотные помехи, нежели отражать их снова в провод. Как видите, неправильно подобранное изделие способно ухудшить работу вашего прибора.




Ферритовые цилиндры

Наиболее эффективно справляются с помехами толстые ферритовые цилиндры. Однако следует учитывать, что слишком громоздкие фильтры весьма неудобны в использовании, а результаты их работы едва ли на практике будет сильно отличаться от немного меньших по размерам. Всегда следует использовать фильтры оптимальных габаритов: внутренний диаметр в идеале должен совпадать с проводом, а его ширина должна соответствовать ширине разъема кабеля.

Не стоит также забывать, что с шумами помогают бороться не только ферритовые фильтры. Например, для лучшей проводимости рекомендуется использовать кабеля с большим сечением. Выбирая длину шнура, не стоит делать большой запас длины между подключаемыми устройствами. Кроме того, источником помех может служить и плохое качество соединения провода и разъема.

Видео: Как правильно пропитать трансформатор намотанный на ферритовом кольце компаундом эпоксидной смолой

Маркировка ферритовых колец

Наиболее широко распространенный тип записи маркирования ферритовых колец имеет следующий вид: К Д д Н, где:

К – это сокращение от слова «кольцо»;

Д – внешний диаметр изделия;

Д – внутренний диаметр ферритового кольца;



Н – высота фильтра.

Видео: Резка магнита по графитовой дорожке. Как резать магнит. Как разрезать магнит. Как распилить магнит.

Кроме габаритных размеров изделия, в маркировке зашифрован тип ферромагнитного материала. Пример записи может иметь следующий вид: М20ВН-1 К 4х2,5х1,6. Вторая половина соответствует габаритным размерам кольца, а в первой зашифрована начальная (20 &mu- i). Кроме указанных параметров, в справочном описании каждый производитель указывает критическую частоту, параметры удельное сопротивление и температуру Кюри для конкретного изделия.

Как еще используют ферритовые кольца

Кроме общеизвестного применения в качестве высокочастотной защиты, ферромагнитные материалы используются для изготовления трансформаторов. Их часто можно увидеть в техники. Общеизвестно, что трансформатор на ферритовом кольце весьма эффективен в балансных смесителях. Однако не всем известно, что существует возможность «растягивания» балансировки. Данная модификация трансформатора способна выполнять операцию балансирования более точно. Кроме того, широко применяются трансформаторы на ферритовых кольцах для согласования выходных и входных сопротивлений каскадов транзисторных устройств. При этом трансформируются активное и Благодаря последнему это устройство можно применить для изменения диапазонов перестройки емкости. «Растягивающие» трансформаторы хорошо работают при частотах ниже 10 МГц.

Заключение

Тем, кто интересуется, как намотать ферритовое кольцо самостоятельно, следует учитывать, что последовательный импеданс, который вносится высокочастотным ферритовым сердечником, запросто можно увеличить, если сделать на нем несколько витков проводника. Как подсказывает теория электротехники, импеданс подобной системы будет увеличиваться пропорционально квадрату числа витков. Но это в теории, а на практике картина несколько отличается вследствие нелинейности ферромагнитных материалов и потерь в них.

Пара витков на сердечнике увеличивает импеданс не в четыре раза, как должно быть, а немного меньше. В результате для того чтобы несколько витков смогли поместиться в кабельном фильтре, следует выбирать кольцо заведомо большего типоразмера. Если же это неприемлемо, и провод должен оставаться той же длины, лучше применять несколько фильтров.



Внимание, только СЕГОДНЯ!

Другое название: феррит, ферритовая шайба. Эта штука всегда есть на кабеле, идущем от компьютерной видеокарты к монитору – можно посмотреть, как она выглядит. Зачастую она выглядит просто как утолщение на кабеле, поскольку находится под общей изоляцией. Назначение ферритового кольца – уменьшить проникновение в устройство радиочастотных помех по сетевому кабелю.

Например, при ударе молнии вблизи электрических проводов, в них возникает ток, который идет сразу по обоим проводам в устройство, и, пройдя сквозь него, через емкость между корпусом и землей замыкается на землю. Молния – это довольно редкое явление, поэтому в основном такие помехи создает радиопередающая аппаратура, импульсные блоки питания, различные промышленные установки.

В отличие от нормальной передачи энергии, когда по одному проводу ток приходит в нагрузку, а по другому возвращается обратно в источник, высокочастотная (ВЧ) помеха может распространяться сразу по двум проводам (рис. 53).

То есть оба сетевых провода для такой помехи – это как два параллельных прямых провода (или как антенна), а земля – обратный провод. Ситуация усугубляется при заземлении корпуса устройства. Внутри устройства, ток ВЧ помехи распределяется совершенно непредсказуемым образом, при этом он может воздействовать на разные цепи и нарушать их работу. Нацепив ферритовое кольцо на сетевой провод, мы увеличиваем его (провода) индуктивность, а значит и сопротивление на высоких частотах. Поэтому ток помехи станет заметно меньше. Причем важно, что внутри ферритового кольца находятся сразу оба проводника кабеля – в этом случае индуктивность электрической цепи для сетевого напряжения не увеличится и наличие кольца никак не отразится на обычной работе системы.

Кстати, ферритовое кольцо – наверно единственная вещь, которая никогда не приносит вреда, поэтому его применение не ограничено. Более того, такие кольца рекомендуется использовать на всех кабелях, подключаемых к усилителю, как на сетевом, так и на входных и колоночных – в наш век промышленности и радиосвязи они будут весьма полезны.

В продаже есть разрезные ферритовые шайбы, состоящие из двух половинок в корпусе с защелками. Крепить их на кабель очень быстро и удобно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Related Posts

Главное преимущество электролитических конденсаторов состоит в их огромной удельной емкости. Но выигрыш в емкости достигнут проигрышем по некоторым другим параметрам. Одним из таких проигрышей является то, что работа электролитических конденсаторов…….

Надежность – вещь, которой никак нельзя пренебрегать! В целом, современные компоненты весьма надежны, но бывают ситуации, когда вследствие неправильного использования, что-то быстро выходит из строя. Обычно каждый элемент имеет некоторый…….

Обычно для тестирования усилителей используется синусоидальный сигнал. Он же зачастую применяется и для измерения максимальной выходной мощности. Реальный музыкальный (и вообще звуковой) сигнал имеет одно важное отличие: он очень динамичный……..

Рассмотрим как сделать схему преобразователя для питания сверхъяркого светодиода. Такая схема может стать хорошим стартом для практического изучения электроники. На основе этого преобразователя в дальнейшем соберем своими руками несколько интересных и полезных электронных самоделок.

Как сделать преобразователь напряжения своими руками

Первая трудность в сборке схемы это приобретение ферритового кольца. Ферритовые кольца неотъемлемая часть устройств с импульсными источниками питания (компьютеры, телевизоры, мониторы, видеомагнитофоны и т.д.) Найти такую старую или сломанную технику не составит труда. Например, несколько колец можно найти в блоке питания компьютера в дросселях фильтра питания. Дроссели удаляются с платы, обмотки демонтируются освобождая ферритовое кольцо.

Блок питания компьютера

Добытые дроссели

Вторая трудность в сборке схемы это поиск обмоточного провода. Провод также легко доступен, два куска провода в изоляции легко добыть из сетевого интернет кабеля типа UTP, двух проводков длиной 0,5-1 м вполне хватит.

Кусок кабеля UTP

Проводники для намотки

Радиодетали, также выпаиваются из устаревшей или неисправной техники. Необходимо одно сопротивление номиналом 300 Ом — 10 кОм, любой транзистор n-p-n структуры и конечно светодиод. Цоколевку транзистора определяем задав в поисковике запрос «маркировка транзистора datashit». Допустимо установить в схему транзисторы структуры p-n-p, но для этого необходимо будет поменять полярность питания схемы и светодиода.

Сборка тороидального трансформатора показана на видео. Обмотки наматывается своими руками сразу в два провода. Средняя точка формируется соединением начала одной обмотки с концом другой. Смотри фото. Количество витков 10-30 витков.

Намотка проводов

Обмотки трансформатора

Формирование средней точки

Правильно собранная схема начинает работать сразу. Применение тороидального трансформатора, по сравнению со схемой , резко повышает КПД и экономичность схемы преобразователя. Преобразователь запустится даже при подаче напряжения 0,3 вольта(!) и выдаст напряжение для работы светодиода 2,5-3 Вольта. Если есть вопросы — спрашивайте!