Транзисторные стабилизаторы с защитой от перегрузки. Стабилизатор напряжения с двойной защитой

11.01.2024 Смесители

От значения КПД зависит эффективность работы стабилизатора - чем он выше, тем лучше. У разных моделей параметр находится в диапазоне от 80 до 90%. Самый высокий КПД присущ электромеханическим моделям и достигает 97%. При небольшом энергопотреблении они способны поддерживать работу потребителей с высокой суммарной мощностью.

Габариты и тип установки

Большинство стабилизаторов рассчитаны на напольную установку, так как массивные модели имеют габариты более 1 м в длину и ширину. Небольшие бытовые устройства могут крепиться к стене . Они имеют тонкий корпус, толщина которого, как правило, составляет не более 8 – 10 см.

Конструктивные особенности

При покупке стабилизатора следует обратить внимание на класс защиты от воды. Если нет риска попадания влаги, можно приобрести модель в негерметизированном корпусе (IP20). Когда есть вероятность попадания воды, выбирают стабилизаторы во влагозащитном исполнении (от IP21 до IP24). Если прибор предполагается использовать на улице или в неотапливаемом помещении, выбирают стабилизатор в климатическом исполнении – его корпус выдерживает минусовые температуры. Модели для установки в отапливаемых помещениях рассчитаны на работу только при плюсовых температурах.
Если стабилизатор будет использоваться в течение длительного времени, ему необходима система охлаждения. Наиболее эффективная - принудительная вентиляция корпуса. С ней такой прибор не будет отключаться из-за перегрева. У многих моделей охлаждение пассивное - это оправдано, когда оборудование рассчитано на кратковременные рабочие циклы.

Контрольные и защитные системы

Стабилизатор контролирует напряжение на входе и выходе , его значения выводятся на панель, где находится механический или электронный вольтметр.
Система автоматического отключения срабатывает при угрозе перегрузки, перегрева или короткого замыкания. Она предотвращает поломки стабилизатора и подключенных к нему приборов.
На панели также предусмотрены два световых индикатора - включения и оповещения об ошибках. Модели со встроенным микропроцессором обеспечивают постоянный контроль рабочих параметров устройства, сети и подключенной нагрузки.

Справочная статья, основанная на экспертном мнении автора.

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Для питания устройств, не требующих высокой стабильности напряжения питания, применяют наиболее простые, надежные и дешевые стабилизаторы - параметрические. В таком стабилизаторе регулирующий элемент при воздействии на выходное напряжение не учитывает разницы между ним и заданным напряжением.

В наиболее простом виде параметрический стабилизатор это регулирующий компонент (стабилитрон), подсоединяемый параллельно нагрузке. Надеюсь вы помните , ведь, в отличие от диода, он включается в электрическую цепь в обратном направлении, т. е. на анод следует отрицательный, а на катод - положительный потенциал напряжения от источника. В основе принципа действия такого стабилизатора лежит свойство стабилитрона поддерживать на своих выводах постоянное напряжение при существенных изменениях силы протекающего в схеме тока. Балластное сопротивление R, включенное последовательно с стабилитроном и нагрузкой, ограничивает протикающий ток через стабилитрон, если отключить нагрузку.

Для питания устройств, с напряжением 5 В, в этой схеме стабилизаторе можно применить стабилитрон типа КС 147. Номинал сопротивления резистора R берется таким, чтобы при максимальном уровне входного напряжения и отсоединенной нагрузке ток через стабилитрон не был более 55 мА. Так как в рабочем режиме через это сопротивление протекает ток стабилитрона и нагрузки, его мощность должна быть как минимум 1-2 Вт. Ток нагрузки этого стабилизатора должен лежать в интервале 8-40 мА.

Если выходной ток стабилизатора мал для питания, увеличить его мощность можно, добавив усилитель, например на основе транзистора.

Его роль в этой схеме выполняет транзистор VT1, цепь коллектор - эмиттер которого включается последовательно с нагрузкой стабилизатора. Выходное напряжение такого стабилизатора равно разности входного напряжения стабилизатора и падения напряжения в цепи коллектор - эмиттер транзистора и определяется напряжением стабилизации стабилитрона VD1. Стабилизатор обеспечивает в нагрузке ток до 1 А. В качестве VT1 можно использовать транзисторы типа КТ807, КТ815, КТ817.

Пять схем простых стабилизаторов

Классические схемы, которые неоднократно описаны во всех учебниках и справочниках по электронике.

Рис.1. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 5В, 1А.


Рис.2. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 12В, 1А.

Рис.3. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. Регулируемое напряжение 0..20В, 1А

Стабилизатор на 5V 5A построен на основе статьи "Пятивольтовый с системой защиты", Радио №11 за 84г стр. 46-49. Схема действительно оказалась удачной, что не всегда бывает. Легко повторяема.

Особенно хороша идея тиристорной защиты нагрузки при выходе из строя самого стабилизатора. Если ведь он (стабилизатор) погорит, то ремонтировать что он питал себе дороже. Транзистор в стабилизаторе тока VT1 германиевый для уменьшения зависимости выходного напряжения от температуры. Если это не важно можно и кремниевый применить. Остальные транзисторы подойдут любые подходящие по мощности. При выходе из строя регулирующего транзистора VT3 напряжение на выходе стабилизатора превышает порог срабатывания стабилитрона VD2 типа КС156А (5.6V) открывается тиристор и коротит вход и выход, горит предохранитель. Просто и надежно. Назначение элементов регулировок указано на схемах.


Рис.4. Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке и тиристорной схемой защитой при выходе из строя схемы самого стабилизатора.

Номинальное напряжение - 5В, ток - 5А.
RP1 - установка тока срабатывания защиты, RP2 - установка выходного напряжения

Следующая схема стабилизатора на 24V 2A

Рис.5. Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке.

Номинальное напряжение - 24В, ток - 2А.
RP1 - установка выходного напряжения, R3 - установка тока срабатывания защиты.

Схема расчитанна на ток до 20 ампер. Напряжение на выходе стабилизатора ±19 вольт, а коэффициент стабилизации - не ниже 1000. Каждое плечо запитано гальванически развязанными питанием на 24 вольта, предусмотрена защита от короткого замыкания.


Теоретическая часть по источникам питания

Все существующие источники питания относят к одной из двух групп: первичного и вторичного электропитания. К источникам первичного электропитания относят системы, перерабатывающие химическую, световую, тепловую, механическую или ядерную энергию в электрическую. Например, химическую энергию преобразует в электрическую солевой элемент или батарея элементов, а световую энергию - солнечная батарея.

В состав источника первичного электропитания может входить не только сам преобразователь энергии, но и устройства и системы, обеспечивающие нормальное функционирование преобразователя. Зачастую непосредственное преобразование энергии затруднено, и тогда вводят промежуточное, вспомогательное преобразование энергии. Например, энергия внутриатомного распада на атомной электростанции может быть преобразована в энергию перегретого пара, вращающего турбину электромашинного генератора, механическую энергию которого преобразуют в электрическую энергию.

К источникам вторичного электропитания относят такие системы, которые из электрической энергии одного вида вырабатывают электрическую энергию другого вида. Так, например, источниками вторичного электропитания являются инверторы и конверторы, выпрямители и умножители напряжения, фильтры и стабилизаторы.

Классифицируют источники вторичного электропитания по номинальному рабочему выходному напряжению. При этом различают низковольтные источники питания с напряжением до 100 В, высоковольтные с напряжением более 1 кВ и источники питания со средним выходным напряжением от 100 В до 1 кВ.

Любые источники вторичного электропитания классифицируют по мощности Рн, которую они способны отдать в нагрузку. При этом выделяют пять категорий:

микромощные (Рн < 1 Вт);
маломощные (1 Вт < Рн < 10 Вт);
средней мощности (10 Вт < Рн < 100 Вт);
повышенной мощности (100 Вт < Рн < 1 кВт);
большой мощности (Рн > 1 кВт)

Источники питания могут быть стабилизированными и нестабилизированными. При наличии цепи стабилизации выходного напряжения стабилизированные источники обладают меньшей флюктуацией данного параметра, относительно нестабили-зированных. Поддержание неизменным выходного напряжения может быть достигнуто различными способами, однако все эти способы можно свести к параметрическому или компенсационному принципу стабилизации. В компенсационных стабилизаторах присутствует цепь обратной связи для отслеживания изменений регулируемого параметра, а в параметрических стабилизаторах такая обратная связь отсутствует.

Любой источник питания по отношению к сети обладает следующими основными параметрами:

минимальное, номинальное и максимальное питающее напряжение или относительное изменение номинального напряжения в сторону повышения или понижения;
вид питающего тока: переменный или постоянный;
число фаз переменного тока;
частота переменного тока и диапазон ее флюктуации от минимума до максимума;
коэффициент потребляемой от сети мощности;
коэффициент формы потребляемого от сети тока, равный отношению первой гармоники тока к его действующему значению;
постоянство питающего напряжения, которое характеризуется неизменностью параметров во времени

По отношению к нагрузке источник питания может обладать теми же параметрами, что и по отношению к питающей сети, и дополнительно характеризоваться следующими параметрами:

амплитуда пульсации выходного напряжения или коэффициент пульсации;
величина тока нагрузки;
тип регулировок выходных тока и напряжения;
частота пульсации выходного напряжения источника питания, в общем случае не равная частоте переменного тока питающей сети;
нестабильность выходных тока и напряжения под воздействием любых факторов, ухудшающих стабильность.

Кроме того, источники питания характеризуются:

КПД;
массой;
габаритными размерами;
диапазоном температур окружающей среды и влажности
уровнем генерируемого шума при использовании вентилятора в системе охлаждения;
устойчивостью к перегрузкам и к ударам с ускорением;
надежностью;
длительностью наработки на отказ;
временем готовности к работе;
устойчивостью к перегрузкам в нагрузках, и, как частный случай, коротким замыканиям;
наличием гальванической развязки между входом и выходом;
наличием регулировок и эргономичностью;
ремонтопригодностью.

Простенькая относительно схемка, со средними параметрами, на основe транзисторoв с большим усилением. Была сделана для своих нужд в качестве лабораторного.
Часто приходилось заниматься ремонтом или запуском разных схем, для которых нужно было просто иметь чем их питать 3V, 5V, 6V, 9V, 12V... И каждый раз искал что-нибудь подходящее. В ход шли блоки питания от калькуляторов, магнитофонов, аккумуляторы, батарейки. Иногда радовался, что соответствующий источник не давал больших токов, таким образом спасая меня от лишних трат. Конечно делал одно- двух-транзисторные стабилизаторы для решения этой проблемы, но резульнаты не удовлетворяли. Где-то на второй волне вдохновения родилось то, с чем хочу поделится.
Применяется до сих пор при ремонте и запуске устройств, если подходит выходное напряжение конечно. А также при не совсем обычном применении – проверка стабилитронов, зарядка пальчиковых аккумуляторов, просто как источник стабильного тока. В таких случаях крайне удобно наличие хотя бы вольтметра на выходе.

Схема

Устройство разрабатывалось для выходного напряжения 1...12V и регулирования выходного тока в пределах 0,15...3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.


Схема стабилизатора напряжения с регулируемым ограничением выходного тока

Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 - компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 - датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.


Исходная схема с фиксированным напряжением и защитой по току

Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.

Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9...15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 - 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.

Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.
Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.

На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.

Детали

Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30...50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2...3 раза меньше.

VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2...3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.

С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты - К50-16 на 16V.

Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.

Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.

Итого

Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.

Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.

Файлы

Виктор Бабешко повторил конструкцию, прислал свой вариант печатки и фотку.
Файл в LayOut: ▼ 🕗 20/09/14 ⚖️ 17,02 Kb ⇣ 87

LM317 как никогда подходит для проектирования несложных регулируемых источников и , для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите .

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Схема включения с регулируемым выходным напряжением