Технология обработки титановых сплавов резанием. Ооо "нпо титан" — справка — резка и мех.обработка

Среди неспециалистов бытует мнение, что титан имеет явное сходство с нержавеющей сталью. А значит, его можно подвергать механической обработке. При этом такой металл все же прочнее стали, поэтому сама работа с ним примерно раз в пять труднее. Тем не менее, особых проблем металлообработка вызывать не должна.

Сложности обработки титановых изделий

На самом же деле все обстоит несколько сложнее, чем представляется на первый взгляд. Металл этот отличается сниженной теплопроводностью, способен задираться и налипать. Кроме того, сложность заключается и в том, что титан необычайно прочен и способен при термических работах спаиваться с режущим инструментом (ведь резец также состоит из металла и практически всегда оказывается более мягким, чем обрабатываемая деталь). В результате инструмент особенно быстро изнашивается и требует постоянной замены.

Говоря об обработке металла, профессионалы подразумевают несколько разных видов работ с титановыми деталями. У них существуют свои секреты, позволяющие нейтрализовать отрицательные свойства этого металла или свести их к минимуму. Например, специальные охлаждающие составы помогут уменьшить задирание либо налипание металла, а также снизить тот объем тепла, который выделяется при резке титана.

Титановые листы разрезают с помощью гильотинных ножниц. Прокатный сортовой металл крупного диаметра обычно подвергают резке специальными пилами механического типа. Этот инструмент отличается тем, что зуб полотна у него достаточно крупный. Если пруток имеет меньший диаметр, в ход можно пустить токарный станок. Кстати, токарная обработка данного металла осуществляется резцами, изготовленными из особо прочных сплавов. Но даже при этом обстоятельстве скорость работы должна быть снижена и обычно уступает той скорости, которая наблюдается при обработке стали-нержавейки.

Фрезеровка титановых деталей также вызывает сложности: на фрезерные зубцы металл начинает налипать. Чтобы избежать этого, необходимо использовать фрезу, изготовленную из сплавов высокой твердости. В качестве охладителей применяют жидкости, уровень вязкости которых повышен.

Отдельное внимание следует уделить сверлению титановых элементов. В канавках может скапливаться стружка, вследствие чего сверло начинает деформироваться. Сверлить титан можно с помощью стальных быстрорежущих инструментов.

Титан можно использовать также и в качестве материала для составляющих каких-либо конструкций. Детали из этого металла требуется соединять, и здесь применяют несколько методов. Стоит рассмотреть этот вопрос подробнее.

Особенности сварочных работ по титану

Сварка является наиболее часто используемым вариантом соединения титановых деталей. Поначалу любая попытка титановой сварки заканчивалась неудачей. Причины этого назывались разные. Считалось, что в микроструктуре металла происходят изменения, что титан вступает в реакцию в азотом, кислородом и водородом, которые содержатся в воздухе. Среди других факторов называлось возрастание зернистости при разогреве металла. В любом случае, швы оказывались предельно хрупкими. Однако все эти проблемы удалось достаточно быстро решить с помощью новых технологий. Поэтому в настоящее время сварка титановых элементов не вызывает особых сложностей и считается обыденной.

Вместе с тем, определенные нюансы при проведении сварочных работ все же наблюдаются. Чаще всего, это выражается в том, что сварочный шов требуется постоянно оберегать от примесей, которые его загрязняют. Чтобы избежать этого, сварщики применяют флюсы, действующие без кислорода, а также чистый инертный газ. Используются также специализированные прокладки и козырьки для защиты - они позволяют прикрывать остывающие швы и препятствуют загрязнению.

Подобные услуги по металлообработке предполагают повышенную скорость сварки. Это позволяет снизить возрастание зернистости и задержать любые деформации микроструктуры материала. Сварка осуществляется в стандартных условиях. Для того чтобы защитить горячий металл от вступления в реакцию с воздухом, используются отдельные предупреждающие меры.

Сварка может осуществляться и в атмосфере полной контролируемости. Соблюдать ее необходимо, когда требуется избежать даже возможности загрязнения шва. Такие требования выдвигаются для самых ответственных сварочных работ при гарантии чистоты в 100%.

В случае, если нужно соединить небольшие по объему детали, работа проводится в особой камере, которая полностью заполняется инертным газом. Чтобы сварщику был виден весь фронт работ, камеру оснащают специальным окошком.

Если же необходимо соединить крупные элементы конструкции, работа проводится в помещении, герметично закрытом. Любая сварка должна осуществляться подготовленными людьми, а в данной ситуации к работе допускаются лишь профессиональнее сварщики с внушительным опытом. Для них в помещении предусматриваются системы жизнеобеспечения.

Другие способы соединения титановых деталей

Иногда сварка титана выглядит нецелесообразной. В этом случае зачастую используют пайку. Такой вид обработки титанового материала является довольно сложным. Причина в том, что при температурном воздействии оксидная пленка на поверхности детали приводит к весьма непрочному соединению вне зависимости от того, с каким металлом спаивается титан. Поэтому из всех металлов, идеально взаимодействующих с титаном при пайке, подходят лишь алюминий и серебро повышенной чистоты.

Еще один способ соединения титановых изделий между собой или с деталями из иных металлов - это клепка. Этот метод, как и применение болтов, является механическим. Если ставится заклепка из титана, работа существенно удлиняется. При использовании болтов необходимо покрывать их тефлоном либо серебром, в противном случае не избежать налипания титана, а само соединение окажется достаточно хрупким.

Способы нейтрализации минусов титана

Недостатком этого уникального металла является задирание, налипание, которое возникает при трении. В результате происходит ускоренное изнашивание титанового сплава. Если применяется фрезеровка металла , это обстоятельство нельзя не учитывать. Скользя по металлической поверхности, титан вступает в реакцию и начинает налипать, постепенно поглощая всю деталь.

Однако верхний слой титана можно сделать более прочной, устойчивой к истиранию и налипанию. В том числе, для этой цели используется азотирование. Метод состоит в выдерживании детали в азотном газе. Изделие должно быть разогрето в среднем до 900 градусов, а время выдержки составляет свыше суток. В результате азотирования поверхность элемента покрывается нитридной пленкой, придающей титану особую твердость. Как следствие - повышение износостойкости титановой детали.

Еще один метод, позволяющий повысить свойства металла, - это его оксидирование. Оно помогает устранить задирание. Титановую деталь необходимо нагреть, чтобы на ее поверхности возникла оксидная пленка. Она плотно покрывает верхний слой металла, не пропуская внутрь воздух.

Оксидирование может быть низко- и высокотемпературным. В последнем случае изделие выдерживают в течение нескольких часов в нагретом состоянии, а после чего опускают его в холодную воду. Это помогает ликвидировать окалину. Оксидированная таким образом деталь становится более устойчивой к изнашиванию сразу на несколько порядков.

Фрезерование титановых деталей

Титан применяется в самых разных промышленных сферах, в том числе, в самолетостроении и космонавтике. В этих отраслях чаще всего используются детали, выполненные из титана.

Нужно учитывать, что фрезерная обработка металла отличается сложностью. Поэтому для таких работ требуется применять острые фрезы с повышенной скоростью. Следует также максимально снизить контакт детали с резцом. Фрезерование начинается по дуге, а в конце работы фаска должна сниматься под определенным углом.

Квалификация фрезеровщика играет серьезную роль не только в выполнении самих работ, но и в определении их стоимости. Многое будет также зависеть и от того, насколько сложной выглядит геометрия создаваемого из титана элемента.

Фрезерование титана требует определенных условий

По сравнению с большинством других металлов, механическая обработка титана предъявляет более высокие требования и накладывает больше ограничений. Титановые сплавы обладают свойствами, способными существенно влиять как на процесс резания, так и на режущий материал. Если инструмент и режимы резания выбраны правильно, а также при хорошей жесткости станка и надежности закрепления заготовки, процесс обработки титана будет высокоэффективным. Многих проблем, которые традиционно возникают при обработке титана, можно избежать. Нужно лишь преодолеть то влияние, которое свойства титана оказывают на процесс обработки.

Многие из тех свойств, которые делают титан таким привлекательным материалом для изготовления деталей, оказывают влияние на его обрабатываемость, а именно:

  • высокое отношение прочности к весу, причем его плотность составляет, как правило, всего 60 процентов плотности стали,
  • имеет более низкий модуль упругости и более податлив, чем сталь,
  • обладает более высокой стойкостью к коррозии, чем нержавеющая сталь,
  • низкая теплопроводность.

Эти свойства означают, что титан генерирует относительно высокие и концентрированные силы резания при обработке. Это вызывает вибрацию в процессе обработки, что ведет к быстрому износу режущей кромки. Кроме того, титан плохо проводит тепло. Поэтому обработка титана требует от материала инструмента высокой красностойкости.

Трудности обработки титана

Принято считать, что титан с трудом поддается эффективной механической обработке. Но это не типично для и методов обработки. Трудности отчасти возникают оттого, что механическая обработка титана - новая область, и в ней не накоплено достаточно опыта. Кроме того, проблемы нередко носят относительный характер - в сравнении с ожиданиями или иным опытом, особенно в тех случаях, когда этот опыт касается обработки таких материалов, как чугун или низколегированные стали, которые предъявляют более низкие требования и прощают больше ошибок. Титан также может представляться трудным в обработке по сравнению с некоторыми сортами нержавеющей стали.

Хотя обработку титана, как правило, приходится выполнять при других скоростях и подачах, а также с соблюдением ряда предосторожностей, по сравнению с иными материалами, он может быть довольно легким в обработке. Если жесткая деталь из титана надежно зажата на станке соответствующей мощности, в хорошем состоянии и оборудованном шпинделем с конусом ISO 50 с коротким вылетом инструмента, проблем не должно возникать - при условии, что правильно выбран режущий инструмент.

Но идеальные, стабильные условия не всегда присутствуют при фрезеровании. Кроме того, многие детали из титана имеют сложную форму с мелкими, узкими или большими и глубокими карманами, тонкими стенками и фасками. Для успешной обработки этих форм неизбежно требуется инструмент более длинного исполнения, что может вести к деформации инструмента. Потенциальные проблемы с вибрацией чаще возникают при обработке титана.

Боремся с вибрацией и теплом

Прочие факторы, присутствующие в менее чем идеальных условиях, включают в себя тот факт, что большинство станков оснащены шпинделями с конусом ISO 40. Из-за интенсивности эксплуатации этих станков они недолго остаются новыми. Кроме того, конструктивные особенности обрабатываемой детали нередко затрудняют ее эффективное крепление на станке. Проблему усугубляет и то, что обработка, как правило, включает в себя прорезание канавок, контурную обработку или обработку кромок, а эти операции способны - хотя и не должны - приводить к вибрации. Поэтому необходимо постоянно принимать меры для ее предотвращения, по возможности повышая жесткость закрепления детали. Одним из способов решения проблемы является многоступенчатое крепление заготовок, при котором заготовки располагаются ближе к шпинделю, что ослабляет вибрацию.

Поскольку титан сохраняет твердость и прочность при высоких температурах, на режущую кромку пластины воздействуют мощные силы и нагрузки. При этом в зоне резания вырабатывается значительное количество тепла, а это означает опасность деформационного упрочения детали. Поэтому ключевое значение для успешной обработки приобретает правильный выбор марки сплава и геометрии сменной пластины. Исторически, мелкозернистые марки твердых сплавов без покрытия отлично зарекомендовали себя при обработке титана, и сегодня пластины с покрытием PVD способны существенно повысить эффективность.

Необходимые условия для расчетов режимов резания

Точность радиального и торцевого биения инструментов также имеет большое значение. Например, если пластины неправильно установлены в корпусе фрезы, возможно быстрое повреждение всех режущих кромок. Низкие допуски при изготовлении корпусов фрез или державок, степень их изношенности, наличие дефектов или низкое качество державки или износ шпинделя станка сильнее влияют на стойкость инструмента при обработке титана. Из-за этих факторов наблюдалось снижение стойкости до 80 %.

Хотя в целом предпочтение отдается геометрии с положительным передним углом, инструмент с несколько более отрицательным передним углом способен вести обработку при существенно более высоких подачах, которые могут достигать 0,5 мм на зуб. В этом случае очень важна жесткость станка и надежность закрепления заготовки.

При фрезеровании глубоких карманов полезно использовать инструмент различной длины с помощью адаптеров вместо того, чтобы выполнять всю операцию одним инструментом большой длины.

Минимальная рекомендуемая подача при фрезеровании титана обычно составляет 0,1 мм на зуб. Частоту вращения шпинделя также можно уменьшить с тем, чтобы получить исходную скорость подачи. Неверно выбранная частота вращения шпинделя способна сократить стойкость на 95 % при минимальной подаче на зуб.

Как только стабильные условия обеспечены, частоту вращения шпинделя и подачу можно пропорционально увеличивать для достижения оптимальной эффективности. Еще одно решение - убрать несколько пластин из фрезы или выбрать фрезу с меньшим количеством пластин.

По сравнению с другими металлами, механическая обработка титана нуждается в более высоком требовании и выполняется в больших ограничениях. Сплавы из титана обладают некоторыми свойствами, которые способны значительно влиять как на процесс резания, так и на материал, который подвергается резанию. Если режим и инструмент выбраны правильно, а так же надежно закреплена заготовка, процесс металлообработки титана . будет высокоэффективным. Так же можно избежать многих проблем, которые часто возникают при обработке титана , просто нужно преодолеть влияние, которое оказывает титан на процесс металлообработки .

    Многие свойства, которые придают титану статус привлекательного материала для изготовления деталей, оказывают значительный эффект на его обрабатываемость, а именно:
  • имеет более низкую упругость и легче подвергается упругости, в отличие от стали;
  • высокая прочность по отношению к своему весу, причем его плотность составляет 60% плотности стали;
  • низкая теплопроводность;
  • более высокая стойкость к коррозии, чем нержавеющая сталь;

Все свойства перечисленные выше означают, что титан обладает высокими и концентрированными силами при его обработке. Это часто производит вибрацию при обработке и ведет к быстрому износу режущей детали. Кроме этого, титан плохо проводит тепло. Поэтому обработка титана требует от качества инструмента высокой стойкости.

Трудности механической обработки титана

Считается, что титан трудно поддается обработке, но это типично для современных станков, инструментов и методов обработки. Частично трудности в - это новая область, в которой пока еще не набрано хорошее количество опыта. Титан так же может казаться более трудным в обработке по сравнению с другими металлами, такими как: чугун или низколегированные стали. Механическую обработку титана , следует выполнять при других подачах и скоростях, нежели в сравнении с другими металлами, но все же он может быть довольно легок в обработке. Если деталь титана, жестко зажата на станке, в хорошем состоянии и оборудованным специальным шпинделем конусной формы ISO 50, с коротким вылетом инструмента – проблем возникать не должно, при условии что режущий инструмент выбран правильно.

Но стабильные и идеальные условия не всегда присутствуют при фрезеровании. Кроме этого, многие детали из титана имеют сложную форму узкими, мелкими или глубокими и большими карманами, тонкими фасками и стенками. Для правильной и успешной обработки этих форм неизбежно потребуется инструмент более длинного размера, что быстрее может вести к деформации инструмента. Да и потенциальные проблемы с вибрации часто возникают при обработке металла.

Как бороться с вибрацией и теплом при механической обработке титана

: Большинство станков оснащены шпинделями с ISO 40 конусом. Из-за интенсивной эксплуатации этих станков они не долго остаются в новом состоянии. Обработка титана , как правило, включает в себя контурную обработку, разрезание канавок или обработку кромок, а все эти операции способны приводить к вибрации. Поэтому необходимо принимать меры для ее предотвращения, по возможность повышение мощности закрепления детали. Главным способом решения данной проблемы, является многоступенчатое крепление заготовок, при котором заготовки располагают ближе к шпинделю, что позволяет ослабить вибрацию.
Из-за того, что материал титана сохраняет прочность и твердость при высоких температурах, на режущую кромку воздействует большая нагрузка. При этом в месте резания вырабатывается большое количество тепла, а это опасность к деформации. Поэтому большое значение при обработке титана приобретает правильный выбор геометрия сменной пластинки и марка сплава. Решением этой проблемы является пластины с покрытием PVD, которые способны существенно повысить эффективность.

Необходимые условия для расчетов режима резания титана при обработке металла:

Точность торцевого и рационального биения инструментов очень важно при механической обработке титана . К примеру, если пластина неверно установлена в корпусе фрезы, это приведет к быстрому повреждению режущих кромок. Хотя предпочтение отдается геометрии с положительным передним углом, инструмент с немного отрицательным передним углом способен вести обработку при более высоких подачах, которые достигают 0.5 мм. на зуб. В таком случае, значительно важна надежность закрепления заготовки и жесткость станка.
Минимальная применяемая подача при фрезеровании титана обычно составляет 0.1 мм. на зуб. Так же можно уменьшить вращения шпинделя в целях получения исходной скорости подачи. Неправильно выбранная частота вращения шпинделя может сократить стойкость на 90% при минимальной подачи на зуб.
Как только стабильные условия обеспечиваются, подачу и частоту вращения шпинделя можно увеличить для достижения оптимальной эффективности. Еще одним способ является уменьшение пластин из фрезы, либо выбор фрезы с наиболее меньшим количеством пластин.

Производство НПП РУСМЕТ обрабатывает цветной металл
позволяет резать титан, разрезать алюминий и его сплавы, орабатывать латунь, изготавливать из меди и других цветных металлов и их сплавов металлоизделия на станках с ЧПУ.
Важно знать, что , самый эффективный способ металлообработки , заготовительного производства и

Титан - один из самых интересных и сложных для обработки металлов. Его уникальные свойства нашли широкое применение в разных отраслях промышленности. Механическая обработка титана, в сравнении с обычной сталью, более чем в пять раз сложнее, поэтому для создания из него изделий применяют специальные приемы и оборудование.

Основные проблемы, возникающие при обработке титана, и средства их решения

Основной проблемой, возникающей при обработке титана, является его склонность к задиранию и налипанию на инструмент. Также одним из усложняющих факторов является его низкая теплопроводность. Большинство металлов сопротивляются плавлению в гораздо меньшей степени, поэтому при контакте с титаном растворяются в нем, образуя сплавы. Это приводит к быстрому износу применяемого инструмента.

Чтобы уменьшить задирание и налипание, а также для отвода выделяемого тепла, применяют следующие способы:

  • при резке, а также иной обработке титана используют охлаждающие жидкости;
  • заточку изделий выполняют с применением инструментов, изготовленных из твердых сплавов металлов;
  • обработку металла резцами выполняют при гораздо меньших скоростях, чтобы избежать излишнего нагрева.

Эффекты налипания и задирания титана обусловлены его высоким коэффициентом трения, который относят к серьёзным недостаткам этого металла. В своем большинстве изделия из титана быстро поддаются износу, поэтому чистый состав этого металла редко используются для изготовления изделий, которые применяются в условиях трения и скольжения. При трении титан налипает на трущуюся поверхность, вызывая связывающий эффект и уменьшая скорость движения сообщающихся деталей. Способами, которые устраняют этот негативный эффект, выступают азотирование и оксидирование титана.

Азотирование титана - технологический процесс, который заключается в нагреве изделия из титанового сплава до температуры 850 0 С - 950 0 С и его выдержке в течение нескольких суток в среде чистого газообразного азота. В результате происходящих химических реакций на поверхностях изделия образуется пленка из нитрида титана, имеющая золотистый оттенок и обладающая большей твердостью, а также большим сопротивлением к стиранию. Изделия, прошедшие такую обработку, обладают повышенной износостойкостью и не уступают по своим характеристикам изделиям, изготовленным из поверхностно упрочнённых специальных сталей.

Оксидирование титана - распространенный метод, заключающийся в нагреве титанового изделия до 850 0 С и его резком охлаждении в водной среде, что вызывает образование на поверхности обрабатываемой детали плотной пленки, которая хорошо связывается с основным слоем материала. При этом сопротивление стиранию и общая прочность изделия возрастает в 15-100 раз.

Некоторые особенности резки и сверления титана

Нарезка заготовок является очень сложным технологическим процессом, сопровождающимся использованием специальных инструментов и оборудования. Листы разрезаются гильотинными ножницами, а заготовки из сортового проката - распиливаются механической пилой. Небольшие по диаметру пруты нарезают с помощью токарных станков.

Фрезерование титана остается наиболее сложным способом его обработки. Он налипает на зубьях инструмента (фрезы), что значительно затрудняет работу с заготовкой. Поэтому для такого способа применяют инструменты, изготовленные из твердого сплава металлов, а процесс обработки сопровождают использованием охлаждающих смазок и жидкостей, которые обладают большой вязкостью.

При выполнении операций сверления важно, чтобы стружка, образующаяся в результате сверления, не накапливалась в отводных каналах, в противном случае это может привести к преждевременному износу и поломке инструмента. При сверлении применяют фрезы, изготовленные из быстрорежущей стали.

Особенности соединения титановых изделий и их элементов

Если титановое изделие выступает элементом конструкции, то соединить детали, изготовленные из титановых сплавов, позволяет применение таких методов:

  • сварка;
  • пайка
  • механическое соединение с использованием заклепок
  • соединение с применением болтового крепления.

Основным методом соединения выступает сварка, представляющая обычную промышленную технологию. Чтобы обеспечить прочность сварного шва соединение элементов выполняют в среде инертного газа или специальных бескислородных флюсов. Также для этого оберегают шов с применением различных защитных элементов. Взаимодействие расплавленного титана с такими химическими элементами как водород, кислород и азот, содержащимися в воздушной смеси, при нагреве приводит к росту зерна металла, изменению его микроструктуры и хрупкости сварного шва. Сварочные работы выполняют на большой скорости.

Также существует метод сварки в контролируемой среде, который применяется для выполнения работ, требующих большой ответственности. При необходимости соединить небольшие по своим размерам элементы, их помещают в специальные камеры, заполненные инертным газом. В случае соединения элементов большего размера сварочные работы выполняют в специальных герметично изолированных помещениях. Сварка титана - ответственная работа, которая доверяется исключительно подготовленным специалистам, имеющим необходимый практический опыт и навыки.

Пайка титана применяется в случаях, когда проведение сварочных работ невозможно или нецелесообразно. Она также осложнена химическими реакциями. Титан в расплавленном состоянии демонстрирует высокую химическую активность и прочно связан с пленкой окиси, формируемой на поверхностях обрабатываемой детали. Большинство распространенных металлов непригодны в качестве припоя для соединения титановых элементов, для этих целей используются только чистые по своему составу алюминий и серебро.

Механическое соединение элементов из титана с помощью клепок и болтовых креплений также выполняется с применением специальных материалов. В большинстве случаев заклепки изготавливают из алюминия, а применяемые болты покрываются напылением серебра или синтетического тефлона. Это вызвано тем, что при завинчивании титан проявляет свое свойство налипания и задирается, в результате соединения элементов становятся ненадежными, не обеспечивают прочной фиксации.

Обрабатываемость стали зависит от состава легирующих элементов, методов термообработки и способа получения заготовки (отливка, поковка и т. д.).

При обработке низкоуглеродистых сталей основной проблемой является образование наростов и заусенцев. При обработке сталей высокой твёрдости важное значение приобретает взаимное расположение заготовки и фрезы для предотвращения выкрашивания режущей кромки.

При фрезеровании стали всегда строго соблюдайте наши рекомендации по расположению фрезы во избежание излишнего увеличения толщины стружки на выходе, а также по возможности не применяйте СОЖ, в особенности при выполнении черновой обработки.

Фрезерование нержавеющей стали

Нержавеющую сталь можно разделить на ферритную/мартенситную, аустенитную и дуплексную (аустенитную/ферритную). При этом для каждого вида предлагаются свои рекомендации по фрезерованию.

Фрезерование ферритной/мартенситной нержавеющей стали

Классификация материала: P5.x

Ферритные нержавеющие стали имеют обрабатываемость, схожую с низколегированными сталями, поэтому при их обработке можно руководствоваться общими рекомендациями по фрезерованию стали.

Мартенситные нержавеющие стали более склонны к упрочнению в процессе резания и вызывают очень высокие силы резания при врезании в заготовку. Для получения оптимальных результатов выбирайте правильную траекторию инструмента и метод вход в резание по дуге, а также более высокую скорость резания v c , чтобы преодолеть эффект упрочнения. Более высокая скорость резания и более прочный сплав в сочетании с усиленной режущей кромкой способствуют повышению стабильности.

Фрезерование аустенитной и дуплексной нержавеющей стали

Классификация материала: M1.x, M2.x и M3.x

Основными видами износа при фрезеровании аустенитых и дуплексных нержавеющих сталей являются выкрашивание режущих кромок, возникающее в результате возникновения термических трещин, образование проточин и наростов и налипание материала. Среди характерных дефектов деталей можно назвать образование заусенцев и низкое качество обработанных поверхностей.


Термические трещины


Выкрашивание режущих кромок


Образование заусенцев и низкое качество обработанных поверхностей

  • Во избежание образования наростов на режущих кромках выбирайте высокую скорость резания (v c = 150 – 250 м/мин).
  • Работайте без применения СОЖ для минимизации риска возникновения термических трещин
  • Иногда необходимо применять СОЖ, предпочтительно в виде масляного тумана или тончайшей плёнки для улучшения качества поверхности. При чистовом фрезеровании риск возникновения термических трещин снижается, так как в зоне резания выделяется меньшее количество тепла.
  • Используйте сплавы типа кермет для обеспечения высокого качества поверхности при работе без СОЖ
  • Слишком низкое значение подачи f z может вызвать чрезмерный износ пластины, так как в этом случае режущая кромка будет работать в поверхностно упрочнённой зоне.

Фрезерование чугуна

Существует пять основных типов чугуна:

  • Серый чугун (GCI)
  • Чугун с шаровидным графитом (NCI)
  • Ковкий чугун (MCI)
  • Отпущенный ковкий чугун (ADI)

Серый чугун (GCI)

Классификация материала: K2.x

Основными видами износа при фрезеровании серого чугуна являются абразивный износ по задней поверхности и термические трещины. Среди характерных дефектов деталей можно назвать выкрашивания в области выхода фрезы из резания и низкое качество обработанных поверхностей.


Типичный износ пластины​


Выкрашивание на детали​​

  • Работайте без применения СОЖ для минимизации риска возникновения термических трещин Используйте твердосплавные пластины с покрытием большой толщины.
  • В случае выкрашивания материала заготовки:
    • Проверьте износ по задней поверхности
    • Уменьшите подачу f z для уменьшения толщины стружки.
    • Выберите более острую геометрию
    • Предпочтительно используйте фрезы с углом в плане 65/60/45 градусов
  • При необходимости применения СОЖ для осаждения частиц пыли выбирайте соответствующие марки сплавов.
  • Первым выбором всегда должен быть твёрдый сплав с покрытием. Однако возможно также использование керамики. Помните, что скорость резания v c должна быть очень высокой: от 800 до 1000 м/мин. Образование заусенцев на заготовке ограничивает скорость резания. Не применяйте СОЖ.
  • Используйте твердосплавные пластины с тонким покрытием или без покрытия.
  • Для чистовой обработки с высокой скоростью резания можно использовать сплавы на основе CBN. Не применяйте СОЖ.

Чугун с шаровидным графитом

Классификация материала: K3.x

Обрабатываемость ферритного и ферритно-перлитного чугуна с шаровидным графитом очень близка к обрабатываемости низколегированных сталей. В связи с этим при выборе инструментов, сплавов и геометрий пластин можно руководствоваться общими рекомендациями для фрезерования сталей.

Перлитный чугун с шаровидным графитом является более абразивным материалом, поэтому для него рекомендуется использовать сплавы для обработки чугуна.

Для получения оптимальных результатов используйте сплавы с покрытием PVD и СОЖ.

Чугун с вермикулярным графитом (CGI)

Классификация материала: K4.x

Данный тип чугуна CGI нередко имеет на 80% перлитную структуру и чаще всего подвергается обработке фрезерованием. В качестве типичных деталей можно назвать блоки двигателей, головки блоков цилиндров и выпускные коллекторы.

Круговое фрезерование может стать отличной альтернативной традиционному растачиванию цилиндров из CGI.​

Отпущенный ковкий чугун (ADI)

Классификация материала: K5.x

Как правило, черновая обработка выполняется в незакалённом состоянии и может быть сравнима с фрезерованием высоколегированной стали.

Напротив, чистовая обработка выполняется по закалённому материалу, который отличается высокой абразивностью. Этот процесс можно сравнить с фрезерованием закалённых сталей группы ISO H. В связи с этим предпочтительно использовать сплавы с высокой стойкостью к абразивному износу.

По сравнению с фрезерованием чугуна с вермикулярным графитом стойкость инструмента при обработке отпущенного ковкого чугуна ниже примерно на 40%, а силы резания – выше примерно на 40%.

Фрезерование цветных металлов

Группа цветных металлов включает не только алюминиевые сплавы, но также сплавы на основе магния, меди и цинка. Обрабатываемость может быть различной, в первую очередь в зависимости от содержания кремния. Самым распространённым типом является доэвтектический алюминий с содержанием кремния ниже 13%.

Алюминий с содержанием кремния ниже 13%

Классификация материала: N1.1-3

Основными видами износа является наростообразование и налипание материала на режущие кромки, что ведёт к образованию заусенцев и ухудшению качества обработанных поверхностей. Для предотвращения появления царапин на поверхностях деталей важное значение имеет нормальное образование и эвакуация стружки.

Режущая пластина с вставками из PCD

  • Используйте пластины с вставками из PCD и острой, полированной режущей кромкой для хорошего дробления стружки и предотвращения образования наростов.
  • Выбирайте пластины с положительной геометрией и острыми режущими кромками.
  • В отличие от фрезерования других материалов, обработка алюминиевых сплавов должна всегда осуществляться с применением СОЖ. Это позволяет предотвратить налипание материала на режущие кромки и улучшить качество обработанных поверхностей.
    • Содержание кремния < 8%: Используйте СОЖ с концентрацией 5%.
    • Содержание кремния 8–12%: Используйте СОЖ с концентрацией 10%.
    • Содержание кремния > 12%: Используйте СОЖ с концентрацией 15%.
  • Более высокая скорость резания, как правило, способствует улучшению результатов и не оказывает негативного влияния на стойкость инструмента.
  • Рекомендуется выбирать значение h ex в диапазоне от 0,10 до 0,20 мм. Слишком низкие значения могут приводить к образованию заусенцев.

Внимание: не допускайте превышения максимальной частоты вращения фрезы.

  • В связи с высокой минутной подачей выполняйте обработку на станках с функцией расчёта траектории на основе упреждающего считывания и анализа кода программы во избежание нарушения размеров.
  • Стойкость инструмента часто ограничивается образованием заусенцев и низким качеством обработанных поверхностей часто. Износ пластин не может являться критерием стойкости инструмента.

Фрезерование жаропрочных сплавов (HRSA)

Жаропрочные сплавы (HRSA) можно разделить на три группы: сплавы на основе никеля, железа и кобальта. Титан может быть технически чистым или входить в состав сплава. Как жаропрочные, так и титановые сплавы характеризуются плохой обрабатываемостью, в особенности после старения, что предъявляет особые требования к режущим инструментам.

Жаропрочные сплавы и титан

Фрезерование жаропрочных сплавов и титана нередко требует использования станков с высокой жёсткостью, а также с высокой мощностью и крутящим моментом при низкой частоте вращения. Образование проточин и выкрашивание кромки – это самые распространённые типы износа. Выделение большого количества тепла ограничивает скорость резания.


Используйте круглые пластины для минимизации образования проточин

  • По возможности всегда используйте круглые пластины для усиления эффекта утончения стружки
  • При глубине резания менее 5 мм главный угол в плане должен составлять менее 45°. Как показывает практика, лучше всего использовать круглые пластины с положительной геометрией
  • Высокая точность фрезы в осевом и радиальном направлении имеет важное значение для поддержания постоянной нагрузки на зуб и стабильности процесса и позволяет избежать повреждения отдельных пластин фрезы
  • Рекомендуется выбирать пластины с положительной геометрией и оптимизированным округлением режущих кромок во избежание налипания стружки на выходе кромки из резания
  • Эффективное число зубьев, участвующих в процессе резания, должно быть максимально возможным Это обеспечит хорошую производительность при условии надлежащей стабильности. Используйте фрезы с мелким шагом

= стойкость инструмента
= снижение стойкости инструмента при увеличении режимов резания

Изменение режимов резания в разной степени влияет на стойкость инструмента. Самое большое влияние имеет скорость резания v c , затем a e и т. д.

СОЖ

В отличие от фрезерования большинства других материалов, обработка должна всегда осуществляться с применением СОЖ. Это позволяет облегчить снятие стружки, ограничить выделение тепла в зоне резания и предотвратить вторичное резание стружки. При этом предпочтительным является подвод СОЖ через шпиндель/инструмент под высоким давлением (70 бар) вместо наружного подвода при низком давлении.


Подвод СОЖ через инструмент
даёт определённые преимущества при
использовании твердосплавных пластин

Износ режущих пластин/инструмента

Самыми распространёнными причинами поломки инструмента и плохого качества обработанных поверхностей являются образование проточин, чрезмерный износ по задней поверхности и выкрашивание режущей кромки.

Лучший способ избежать этого – регулярная смена режущих кромок, гарантирующая надёжный и стабильный процесс. Износ по задней поверхности не должен превышать 0,2 мм для фрез с главным углом в плане 90 градусов, и максимум 0,3 мм для круглых пластин.


Типичный износ пластины​

Фреза с керамическими пластинами для черновой обработки жаропрочных сплавов

Скорость резания при использовании керамических пластин, как правило, в 20–30 раз выше скорости при использовании твёрдого сплава, при более низкой подаче (~0,1 мм/зуб), результатом чего становится более высокая производительность. Благодаря прерывистому характеру резания во время этой операции выделяется меньше тепла, чем при точении. Благодаря этому скорость резания может достигать 700–1000 м/мин при фрезеровании по сравнению с 200–300 м/мин при точении.

  • Используйте преимущественно круглые пластины для обеспечения малого главного угла в плане и предотвращения образования проточин
  • Не применяйте СОЖ.
  • Не используйте керамику для обработки титана.
  • Керамика оказывает негативное влияние на свойства поверхности и поэтому не должна использоваться на чистовых этапах обработки.
  • Максимальный износ по задней поверхности при использовании керамических пластин для обработки жаропрочных сплавов составляет 0,6 мм.

Фрезерование закалённых сталей

Эта группа включает закалённые и отпущенные стали с твёрдостью > 45–65 HRC.

Типичные детали для обработки фрезерованием:

  • Чеканочные штампы из инструментальной стали
  • Пресс-формы
  • Ковочные штампы
  • Литейные штампы
  • Топливные насосы

Основными проблемами являются абразивный износ по задней поверхности пластин и выкрашивание материала заготовки.

  • Используйте пластины с положительной геометрией и острыми режущими кромками. Это позволит уменьшить силы резания и обеспечить более плавный процесс резания.
  • Работайте без применения СОЖ.
  • Подходящим методом является трохоидальное фрезерование, которое предполагает высокую минутную подачу в сочетании с низкими силами резания, что способствует уменьшению температуры на режущей кромке и заготовке и, как следствие, положительно влияет на производительность, стойкость инструмента и размерную точность деталей.
  • При торцевом фрезеровании также рекомендуется использовать стратегию обработки, которую можно охарактеризовать как «лёгкая и быстрая», то есть с малой глубиной резания a e и a p . Используйте фрезы с мелким шагом и выбирайте относительно высокую скорость резания.